
Comparison of Authoring Environments: MacHack '91 Proceedings   Page 1

Courseware Development:  A Comparison of
Three Programming/Authoring Environments

Thomas E. Ludwig, Hope College

Courseware developers can choose from a variety of programming environments on the
Macintosh, ranging from standard programming languages to special-purpose tools for
creating instructional modules.  This paper compares three representative development
environments:  ZBasic, a powerful BASIC compiler thal offers total control of  the Mac
interface;  HyperCard,  the  standard  for  courseware   development;   and  Authorware
Professional,  the most powerful  (and most  expensive) of  the instructional development
systems.   A  sample  courseware  module  illustrating  the  structure  and  function  of  the
human auditory  system (taken from the  PsychSim courseware  package),  developed  in
parallel in these three environments, will serve as the basis for the comparisons.  The
strengths and weaknesses of each environment will  be discussed from the developer’s
point of view and from the student user’s point of view.

When I began developing instructional software in
the  early  1980s,  courseware  authors  had  little
choice but to use a general purpose programming
language such as Pascal or BASIC.  At the time,
these  languages  were  not  at  all  conducive  to
courseware development.  The available dialects of
BASIC were unstructured and lacked power, and
the  early  versions  of  Pascal  didn’t  even  support
graphics!  Fortunately, things have changed.  The
BASICs began to support structured programming,
C  entered  the  scene,  and  most  of  the  general-
purpose  programming  languages  have  moved
toward object-oriented programming.

But  the  most  exciting  change  for  instructional
developers has been the appearance of completely
new  options  for  courseware  development,
especially on the Macintosh.  Some of these new
development  environments  are  specifically
designed for producing courseware, while others
are  general-purpose  tools  that  can  be  easily
applied to courseware development.   As I see it,
the  options  for  the  courseware  author  fall  into
three categories:

• General Programming Languages such as Pascal,
C,  or  BASIC,  along  with  their  object-oriented
varieties.

•  Hypertext  Development  Environments  such  as
HyperCard, SuperCard, Guide, and PLUS.

•  Specialized  Authoring  and  Multimedia

Development  Environments  such  as  Director,
Filmmaker, MediaTracks, and Authorware.

This  paper  will  examine  a  representative
development environment from each of these three
categories.   From  the  general  programming
languages,  I’ve  selected  ZBasic  by  Zedcor,  Inc;
from  the  hypertext  environments  I’ve  selected
HyperCard  by  Claris,  Inc.;  and  from  the
specialized  authoring  tools  I’ve  selected
Authorware Professional by Authorware, Inc.  I’ll
analyze the advantages and disadvantages of these
specific  environments  for  courseware
development,  and  I’ll  try  to  make  some  general
statements about the usefulness of each category
of development tools.

These comparisons will be based on one particular
module from my PsychSim courseware package for
introductory  psychology  courses.   The  PsychSim
package  (which  won  the  1990
EDUCOM/NCRIPTAL  Higher  Education  Software
Award for “Best Psychology Software”) contains 16
modules covering a range of topics in psychology.
The module  I’ve  selected is  titled  “The Auditory
System,” and focuses on the structure of the ear
and the process of hearing.

In order to make a fair comparison of the three
programming  environments,  I  developed  an
instructional  module in each of  them in parallel,
using  the  same   content  in  all  three.   The
particular software versions used were ZBasic 5.0,

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 1



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 2
HyperCard 2.0, and Authorware Professional 1.6.

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 2



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 3

Figure 1. Title page for auditory module.

I  have  grouped  my  observations  about  these
environments  into  eight  areas:    Cost,  The
Learning  Curve,  Availability  of  Help,  Program
Logic,  Prototyping,  Testing  and  Debugging,
Production and Distribution, and Use by Students.

Cost

ZBasic and HyperCard are both fairly inexpensive.
ZBasic is available by mail order for approximately
$100.   For  comparison,  Microsoft  QuickBasic  is
about $65,   and THINK C and THINK Pascal  by
Symantec each cost about $165.  

A minimal HyperCard environment is shipped with
each  new  Macintosh,  while  the  HyperCard  2.0
upgrade is (or was) available directly from Claris
for about $50, and the HyperCard Developer’s Kit
can be purchased for about $130 by mail  order.
For  comparison,  Silicon  Beach’s  SuperCard  1.5
costs  about  $200,  and  Spinnaker’s  PLUS  2.0  is
about $290. 

The  high  end  of  the  spectrum  is  anchored  by
Authorware Professional 1.6, listing at $8000 but
available to educators for about $1000.  The other
specialized  tools  are  also  fairly  expensive,  with
mail  order  prices  averaging  about  $450  for
Paracomp’s  FilmMaker  2.0  and  MacroMind
Director 2.0, and about $200 for Farallon’s Media
Tracks.

The Learning Curve

Like  all  the  standard  programming  languages,
ZBasic is a fairly difficult environment to master
for those without prior programming experience.
The  syntax  is  complicated  and  precise,  and  the

programmer really needs to know something about
the internal workings of the Macintosh interface.
The tremendous power of the language, especially
its ability to use any of the Macintosh toolbox calls
and  even  to  alter  the  contents  of  the  CPU’s
registers, means that inexperienced programmers
can crash the system in hundreds of ways.  This
power and flexibility also produces a slow learning
curve.  As an example, even though I had about 8
years of previous programming experience with a
number of languages including several dialects of
BASIC,  it  still  took  me about  a  year  to  become
proficient in ZBasic.

In contrast, HyperCard has a fast learning curve.  I
have  seen  individuals  with  zero  programming
experience produce usable stacks after only two or
three  days  of  training.   Of  course,  HyperCard’s
real  power  lies  in  the  HyperTalk  scripting
language, and that takes more time to master.  But
the modularity of the script handlers and the ready
availability  of  sample  scripts  from  other
developers  makes  HyperTalk  one  of  the  easiest
programming languages to learn.  In the space of
several weeks I moved from a HyperCard novice to
a “power user.”

Authorware  Professional  has  a  learning  curve
somewhere between ZBasic  and HyperCard.   Its
visual flow-chart organization (see below) and its
HyperCard-like  drawing  tools  make  it  easy  for
inexperienced  developers  to  produce  simple
interactive  modules.   However,  its  considerable
power, its rather complex scripting language, and
its  ability  to  create  sophisticated  animations
stretch  out  the  learning  curve  for  serious
developers  who  want  to  make  use  of  all  its
features.   Authorware  offers  special  training
seminars  for  its  customers,  but  I  estimate  a
relatively  knowledgeable  developer  could  master
Authorware  on  his  or  her  own over  a  period  of
several months. 

Availability of Help

All  three of  these environments  have substantial
vendor support, in the form of telephone help lines
available to registered users.   Zedcor and Claris
provide free support, while Authorware charges an
annual fee of $150.  Authorware also provides a
quarterly  newsletter  with  tips  for  developers.
However,  the  most  significant  help  that
Authorware  provides  is  a  library  of  modular
routines  and  sample  courseware  ideas.   This

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 3



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 4
library is included in the development package and
is well-indexed for easy use.   Zedcor also provides
a set of example files, and Claris includes several
stacks  of  programming ideas,  but  these  samples
aren’t as extensive or well-documented as the ones
Authorware provides.  On the 

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 4



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 5
other hand, both ZBasic and HyperCard have on-
line  Help  files  that  can  be  accessed  during
program development, while Authorware does not
(I can guarantee that every Authorware reference
manual  will  be  well-worn  in  a  few  months!).
Finally, HyperCard’s popularity and wide use put it
in a special class:  There are dozens of books and
third-party  add-ins  to  help  the  HyperCard
developer, as well as hundreds of public domain or
shareware stacks containing tips or development
tools.

Program Logic

In many respects, Authorware is a programmer’s
dream come true.   Its  development  environment
consists  of  a  multi-window  flow  chart,  with
program segments represented by small icons.  

Figure 2. Sample Authorware developer's screen.

These icons, shown on the vertical bar at the left
in  Figures  2  and  3,  represent  various  program
elements.  Since most Mac programmers are not
familiar with Authorware, let me digress a bit to
explain  Authorware’s  program  logic.   The  small
image of a Macintosh at the top of the vertical bar
is a Display icon which, like a HyperCard card, can
contain  a  single  text  field  or  graphic  object,  or
many such items.   The next  icon is  an Animate
icon, which contains instructions for the animation
of  one  of  the  objects  previously  placed  on  the
screen by a Display icon. The object can be moved
along  a  fixed  or  variable  path  using  one  of  five
different styles of animation.  The third icon is the
Erase  icon,  which  removes  the  contents  of  the
designated  Display  icon  from  the  screen.   This
allows selective  erasure of  some objects  without
disturbing  other  portions  of  the  screen.   Next
comes the Wait icon shaped like a stop sign.  It

produces  a  pause  which  can be  programmed to
last a certain number of seconds, or until the user
presses a key or clicks the mouse.  The diamond
shape  is  the  Decision  icon,  which  branches
according to the value of a variable, or can be set
to  step  sequentially  through  each  branch  of  its
decision tree, as in the case of Figure 3.

Figure  3.  Lower-level  (nested)  Authorware
routine  showing sequential  selection  of  program
segments.

The question mark symbol is the Interaction icon,
which  poses  a  question  or  option,  obtains  a
response  from  the  user  (through  one  of  eight
response  modes),  and  branches  accordingly,
keeping track of the user’s response and scoring it
as correct or incorrect, if desired.  The equals sign
is  the  Calculate  icon,  which  contains  program
script  to  perform calculations,  set  the  values  of
variables,  or  perform  other  functions  under
program control.  The next symbol is the Map icon,
which  merely  contains  a  grouping  of  the  other
icons.  If you click on a Map icon, a new window
opens to reveal the icons contained within it.  This
is the method used to nest subroutines within the
main program flow.  Below that, you see the Start
and Stop flags used for testing  only a portion of
the program.  At the bottom are the multimedia
icons representing  PICS-type “movies” created by
flipping through a series of still images, and sound
files.

Program  development  in  the  Authorware
environment  consists  mostly  of  dragging  icons
onto  the  flow  chart,  then  opening  the  icon  and
adding  the  appropriate  text,  graphics,  sound,
animation,  or branching logic for that portion of
the program.

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 5



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 6

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 6



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 7
In  the  HyperCard  environment,  program
development consists mostly of creating new blank
cards,  filling  those  cards  with  the  desired
information,  and  then  creating  the  links  to
navigate  from one  card  to  other  cards  or  other
stacks.  So in a typical development session, the
Mac screen’s appearance would be very similar to
the way it would look while a student was using
the module for instruction.

Figure 4. Sample HyperCard screen.

Of course, the developer would likely be switching
back and forth between the Browsing mode (which
the student would use) and the Button and Field
and Paint modes, in which the various text fields,
buttons, and graphic objects could be moved and
manipulated.  Also, the developer would probably
make frequent reference to the scripts attached to
the objects on the card (or even to the card itself)
in order to modify the program logic that controls
the student’s navigation from one card to the next,
as well as the actions of objects on that card.

Figure 5.  HyperCard  script  for  card shown in
Fig. 4.

The program logic used by ZBasic or any of the
standard  languages  is  quite  different  from  both
HyperCard and Authorware.  Since ZBasic is only
partially  object-oriented,  the  program  flow
generally steps through the program statements in
a linear fashion, with occasional function calls and
branches to subroutines.  The typical development
session involves staring at a text editor screen full
of semi-English statements, tweaking the values of
variables to improve the placement of objects on
the  screen.   But  in  order  to  actually  see  those
objects,  the  program needs  to  be  compiled  and
executed... and then edited again.

Figure 6. Sample ZBasic program code.

The fact that ZBasic offers total control of the Mac
interface is both a blessing and a curse, because it
means that the developer must specify the precise
coordinates  of  every  object  on  the  screen,  and
must redraw them every time the screen needs to
be updated and dispose of them when they are no
longer  needed.   These  details  are  handled
transparently  in  HyperCard  and  Authorware,
leaving the developer more free to concentrate on
the instructional content 

Prototyping

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 7



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 8
One  of  the  most  striking  differences  between
ZBasic  (or  any  standard  language)  and  the  new
development  environments  lies  in  the  ease  with
which new ideas can be translated into working
prototypes.   The ZBasic developer needs to have a
considerable portion of the program code in place
and debugged before anything will appear on the
screen.   Usually  weeks  of  effort  are  expended
before a working model is ready to be shown to a
publisher  or  to  student  users  for  feedback.   In
contrast, a HyperCard developer can start from an
empty  stack  and  create  a  working  prototype  of
most types of instructional materials in the space
of a few hours, and this could shrink to less than
an  hour  if  the  developer  is  allowed  to  use  an
existing stack as a model.  The same is true for the
Authorware developer:   Ideas can be prototyped
and modified again and again in the length of time
that it would take a ZBasic programmer to bring
up the first screen.

Testing and Debugging

When it comes to serious debugging tools, ZBasic
and  other  standard  languages  usually  have  the
edge, since they generally have built-in debuggers
for  tracing  program  flow  and  single-stepping
through  critical  routines.   HyperCard  and
Authorware  have  more  limited  debugging
facilities,  but  this  is  not  necessarily  a  problem.
The  simplicity  of  HyperCard  and  the  modular
structure  of  the  HyperTalk  event  handlers  mean
that  programming  errors  should  arise  less
frequently,  especially  if  the  developer  reuses
scripts that have already been tested.  The clear
flowchart  structure  of  an  Authorware  program
makes it  less  likely  that errors  in program logic
and branching will occur.  In addition, Authorware
provides  easy-to-use  “Start”  and  “Stop”  flags
which  allow  the  program  to  be  tested  in  small
logical segments.

Production and Distribution

Once the testing is complete, the developer needs
to  decide  how  to  package  the  program  and
distribute  it  for  use.   In  the  HyperCard
environment,  final  production  involves  simply
naming the stack and copying it  to a disk.   The
developer has to assume that the end user has the
proper  version  of  HyperCard,  since  the  stack
cannot be compiled into a stand-alone application
unless you purchase a third-party utility such as
Compile-It by Heizer Software.  The developer has

little  chance  of  retaining  control  of  his  or  her
program script, even if the Protect Stack option is
used, since a serious hacker can easily break into
the code.

In the Authorware environment, the developer has
two  options  for  packaging  the  program.   If  the
program  is  a  single  unit,  the  developer  will
probably  choose  to  compile  the  Authorware
program and bundle it with the run-time module to
create a stand-alone application.   Unusual fonts
can  also  be  bundled  into  the  application,  if
necessary.   If  the  program has  several  modules,
the developer will probably choose to include the
run-time  module  separately  on  the  distribution
disk rather than bundle it with each instructional
module, thus saving disk space.

With  ZBasic,  the  developer  can  compile  the
program  as  a  full-fledged  Mac  application,
complete  with  its  own  application  icon.
Alternatively,  the  developer   may  choose  to
compile related modules as chain files which can
be accessed through a menu-type application that
contains the run-time routines.

The developer must also consider the size of the
packaged  program.   ZBasic  produces  compact
applications;  the  compiled  Auditory  System
module takes up less than 60K.  In contrast, the
equivalent information packaged as a HyperCard
stack  takes  up  about  130K,  and  the  Auditory
System  module  packaged  as  an  Authorware
application  (bundled  with  the  hefty  run-time
routines) is over 300K.

Use By Students

All three of these development environments can
produce instructional modules that are easy to use
and  robust.   However,  since  ZBasic  compiles
programs into tighter, more efficient code,  ZBasic
instructional  modules tend to run faster and are
thus  less  frustrating  to  use  on  the  older  Macs.
This is particularly true if the Mac doesn’t have a
hard disk.  On the other hand, many students are
already familiar with the HyperCard environment
and  thus  may  feel  more  comfortable  with  an
instructional  module  developed  in  HyperCard.
Authorware has a slight advantage over the other
environments  when  it  comes  to  interactivity,  in
that  it  offers  more  different  types  of  possible
responses by students.  In addition to pushbuttons,
text  entry  into  fields,  single  keypresses,  mouse

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 8



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 9
clicks on hot words or graphics, Authorware allows
students to make a response by dragging an object
from  one  area  to  another,  as  in  the  case  of
assembling a molecule from its atoms.

Conclusions

All three of these development environments can
produce  high  quality  instructional  modules,  but
that  doesn’t  mean  that  the  environments  are
functionally identical.  

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 9



Comparison of Authoring Environments: MacHack '91 Proceedings   Page 10
Because  of  its  ease  of  use,  I’d  recommend
HyperCard  to  would-be  academic  developers
without much programming experience.  I’d also
suggest HyperCard as the environment of choice
whenever the information to be presented has a
consistent  structure.   For example,  a  module  on
wildlife  habitats  might  contain  80  sets  of  three
elements:  A picture of an animal, a map showing
its  geographical  distribution,  and  a  text  field
describing the animal’s habitat.  HyperCard would
be  ideal  in  this  situation.   Finally,  because
HyperCard  stacks  are  not  compiled,  I’d
recommend  HyperCard  for  any  instructional
program that expected the end user to add to or
modify the information in the module.

On the other hand, HyperCard is a poor choice for
a  project  that  requires  extensive  animation.
HyperCard’s  animation  options  are  limited  and
SLOW  (although  more  powerful  add-ins  for
animation, such as Add Motion by Motion Works,
are  now available).   For  simple,  fast  animation,
ZBasic is a better choice, while for sophisticated
path-based or data-driven animation, or animated
“movies,” Authorware is clearly superior.  I’d also
recommend Authorware for modules that include
study  guides  or  scored  responses,  because
Authorware has over a hundred system variables
and built-in functions that keep track of the user’s
performance,  making  it  easy  to  give  custom
feedback or branch to remedial material.

If  the  instructional  project  includes  the  use  of
videodisc or CD-ROM materials, both Authorware

and HyperCard have significant  advantages over
ZBasic, both in power and ease of use.  Although
ZBasic  can  control  these  devices,  the
programming  is  tedious  and  error-prone.
Authorware is designed to support virtually all the
standard  videodisc  players  in  a  fully-integrated
way,  while  HyperCard  developers  must  obtain
special drivers from Apple or other vendors.

Although I cut my teeth on standard programming
languages,  I  now see their  role  in  the future of
instructional  computing  as  mainly  limited  to
certain situations in which small, fast modules are
needed.   In  fact,  since  both  Authorware  and
HyperCard  can  call  external  compiled  routines,
even developers  who are proficient  in  a  general
programming language may find themselves using
an authoring environment to control  the general
flow  of  the  program,  and  merely  using  the
programming language to produce small routines
for speed-critical tasks.

As you can see, the tools for academic developers
have improved a great deal in the past ten years,
and  they  will  undoubtably  get  more  and  more
powerful and easy to use. I am genuinely excited
about  the  future  of  instructional  computing.   I
believe that we are about to see a flood of high
quality,  genuinely effective educational packages.
The new hardware platforms and the new software
development  environments  have  finally  brought
the  long-promised  educational  revolution  within
reach.

Comparison of Authoring Environments: MacHack '91 Proceedings   Page 10


